skip to main content


Search for: All records

Creators/Authors contains: "Ando, Shin’ichiro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Since the discovery of an excess in gamma rays in the direction of M31, its cause has been unclear. Published interpretations focus on dark matter or stellar related origins. Studies of a similar excess in the Milky Way centre motivate a correlation of the spatial morphology of the signal with the distribution of stellar mass in M31. However, a robust determination of the best theory for the observed excess emission is challenging due to uncertainties in the astrophysical gamma-ray foreground model. We perform a spectro-morphological analysis of the M31 gamma-ray excess using state-of-the-art templates for the distribution of stellar mass in M31 and novel astrophysical foreground models for its sky region. We construct maps for the old stellar populations of M31 based on data from the PAndAS survey and carefully remove the foreground stars. We also produce improved astrophysical foreground models via novel image inpainting techniques based on machine learning methods. Our stellar maps, mimicking the location of a population of millisecond pulsars in the bulge of M31, reach a 5.4σ significance, making them as strongly favoured as the simple phenomenological models usually considered in the literature, e.g. disc-like templates. This detection is robust to generous variations of the astrophysical foreground model. Once the stellar templates are included in the astrophysical model, we show that the dark matter annihilation interpretation of the signal is unwarranted. We demonstrate that about one million unresolved millisecond pulsars naturally explain the observed gamma-ray luminosity per stellar mass, energy spectrum, and stellar bulge-to-disc flux ratio.

     
    more » « less
  2. ABSTRACT

    We explore the assumption, widely used in many astrophysical calculations, that the stellar initial mass function (IMF) is universal across all galaxies. By considering both a canonical broken-power-law IMF and a non-universal IMF, we are able to compare the effect of different IMFs on multiple observables and derived quantities in astrophysics. Specifically, we consider a non-universal IMF that varies as a function of the local star formation rate, and explore the effects on the star formation rate density (SFRD), the extragalactic background light, the supernova (both core-collapse and thermonuclear) rates, and the diffuse supernova neutrino background. Our most interesting result is that our adopted varying IMF leads to much greater uncertainty on the SFRD at $z \approx 2-4$ than is usually assumed. Indeed, we find an SFRD (inferred using observed galaxy luminosity distributions) that is a factor of $\gtrsim 3$ lower than canonical results obtained using a universal IMF. Secondly, the non-universal IMF we explore implies a reduction in the supernova core-collapse rate of a factor of $\sim 2$, compared against a universal IMF. The other potential tracers are only slightly affected by changes to the properties of the IMF. We find that currently available data do not provide a clear preference for universal or non-universal IMF. However, improvements to measurements of the star formation rate and core-collapse supernova rate at redshifts $z \gtrsim 2$ may offer the best prospects for discernment.

     
    more » « less
  3. null (Ed.)
    ABSTRACT The leading explanation of the Fermi Galactic Centre γ-ray excess is the extended emission from an unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Such a population would, along with the prompt γ-rays, also inject large quantities of electrons/positrons (e±) into the interstellar medium. These e± could potentially inverse-Compton (IC) scatter ambient photons into γ-rays that fall within the sensitivity range of the upcoming Cherenkov Telescope Array (CTA). In this article, we examine the detection potential of CTA to this signature by making a realistic estimation of the systematic uncertainties on the Galactic diffuse emission model at TeV-scale γ-ray energies. We forecast that, in the event that e± injection spectra are harder than E−2, CTA has the potential to robustly discover the IC signature of a putative Galactic bulge MSP population sufficient to explain the Galactic Centre excess for e± injection efficiencies in the range of ≈2.9–74.1 per cent, or higher, depending on the level of mismodelling of the Galactic diffuse emission components. On the other hand, for spectra softer than E−2.5, a reliable CTA detection would require an unphysically large e± injection efficiency of ${\gtrsim} 158{{\ \rm per\ cent}}$. However, even this pessimistic conclusion may be avoided in the plausible event that MSP observational and/or modelling uncertainties can be reduced. We further find that, in the event that an IC signal were detected, CTA can successfully discriminate between an MSP and a dark matter origin for the radiating e±. 
    more » « less